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Determining the finite-amplitude preconditioned states in the hurricane embryo, which
lead to tropical cyclogenesis, is a central issue in contemporary meteorology. In the
embryo there is competition between different preconditioning mechanisms involving
hydrodynamics and moist thermodynamics, which can lead to cyclogenesis. Here
systematic asymptotic methods from applied mathematics are utilized to develop
new simplified moist multi-scale models starting from the moist anelastic equations.
Three interesting multi-scale models emerge in the analysis. The balanced mesoscale
vortex (BMV) dynamics and the microscale balanced hot tower (BHT) dynamics
involve simplified balanced equations without gravity waves for vertical vorticity
amplification due to moist heat sources and incorporate nonlinear advective fluxes
across scales. The BMV model is the central one for tropical cyclogenesis in the
embryo. The moist mesoscale wave (MMW) dynamics involves simplified equations
for mesoscale moisture fluctuations, as well as linear hydrostatic waves driven by heat
sources from moisture and eddy flux divergences. A simplified cloud physics model
for deep convection is introduced here and used to study moist axisymmetric plumes
in the BHT model. A simple application in periodic geometry involving the effects of
mesoscale vertical shear and moist microscale hot towers on vortex amplification is
developed here to illustrate features of the coupled multi-scale models. These results
illustrate the use of these models in isolating key mechanisms in the embryo in a
simplified content.

1. Introduction
Hurricanes or tropical cyclones do not form spontaneously and involve a hurricane

embryo. The embryo is a localized region where simultaneously a deep cloud cluster
forms and low-level cyclonic vorticity amplifies. The embryo requires finite-amplitude
preconditioning involving typically a mesoscale low pressure trough for the ambient
background flow, as well as the thermodynamic preconditioning of a moist lower
troposphere with large convectively available potential energy favourable to deep
convection, and a sufficiently large sea surface temperature (Emanuel 1989). The
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ambient background preconditioning flow often involves a weak cyclonic vortex in
a weak background shear (Molinari, Vollaro & Corbosiero 2004; Frank & Roundy
2006; Molinari, Lombardo & Vollaro 2007) and the transition to a mature cyclone
involves complex multi-scale interaction (Ritchie & Holland 1997).

One group has emphasized a turbulent vortical hot tower route for cyclogenesis in
the embryo (Hendricks, Montgomery & Davis 2004; Montgomery et al. 2006) and
the role of critical layers in the background flow (Dunkerton, Montgomery & Wang
2008). Others have given a dominant role to moist thermodynamics (Nolan 2007,
and references therein) in the preconditioned environment. Recent work (Hendricks
et al. 2004; Montgomery et al. 2006) involving numerical simulation of comprehensive
mesoscale models suggests that deep convection enhances low-level cyclonic rotation
through the merger of rotating updrafts. The present paper involves a new family of
simplified moist multi-scale models which are useful in sorting out the fluid dynamical
and moist thermodynamic contributions in tropical cyclogenesis as well as isolating
the prominent dynamical mechanisms in the process in a simplified context. For
example, § 4 illustrates that the present models have simplified moist axisymmetric
hot towers which respond in a qualitatively correct fashion to increasing low-level
background moisture. The simulations in § 5 illustrate the development of intense
low-level cyclonic vorticity fluctuations through moist balanced hot towers (BHTs)
with simplified cloud physics.

The spatial and temporal scales for the development of deep convective moist hot
towers, called the microscales here, have the units

Lm = 10 km, Tm = 15 min. (1.1)

The spatiotemporal scales for the development of intensifying mesoscale vortices in
the hurricane embryo are the mesoscales with units

LM = 100 km = ε−1Lm, TM = 2.5 h = ε−1Tm (1.2)

for ε ≈ 0.1. The parameter ε also simultaneously represents the low Froude number
ε = Fr = v/(NLm) based on the 10 km length scale in a distinguished asymptotic
limit with the typical velocity of 10 m s−1 and the standard atmosphere value for
the Brunt–Väisälä frequency N = 10−2 s−1. See the discussion below (2.3) in § 2. On
the larger time scale TM , the effects of rotation become significant. The main goal
of the present paper is to develop simplified moist multi-scale models involving the
scales in (1.1) and (1.2) which involve the upscale and downscale vortical and moist
thermodynamic processes governing the hurricane embryo. These simplified models
are developed here by utilizing systematic multi-scale asymptotic methods from
applied mathematics (Klein 2000; Majda 2003; Majda & Klein 2003; Klein & Majda
2006; Majda 2007a ,b; Biello & Majda 2009; Majda & Xing 2009). Such simplified
multi-scale models have already proved to be useful in understanding the multi-scale
features of tropical inter-seasonal oscillations (Majda & Biello 2004; Biello & Majda
2005, 2006; Biello, Majda & Moncrieff 2007; Majda & Stechmann 2009), the self-
similarity of convectively coupled waves in the tropics (Majda 2007b), the propagation
of squall lines in strong vertical shear (Majda & Xing 2009) and for supplying a
systematic framework (Majda 2007b) for improving superparameterization algorithms
(Grabowski 2001, 2004; Xing, Majda & Grabowski 2009). The crucial additional
assumption in the asymptotic derivation presented below is sufficiently low Froude
numbers which allow horizontal velocities of order 10 m s−1; this simplifying
assumption is natural for the hurricane embryo with weak preconditioned shear and
vortices and allows for the development of intense mesoscale vortices in the transition
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Figure 1. The multiple spatiotemporal scales spanned by the interacting multi-scale
models in the embryo.

to cyclogenesis. Obviously, the complete final transition to a mature hurricane involves
even stronger winds which violate this assumption. The simplified multi-scale models
are developed in the context of the moist anelastic equations with warm rain bulk
cloud microphysics; § 2 contains a discussion of the non-dimensionalization of these
equations as well as an introduction to the multi-scale asymptotics needed in this
paper. The moist multi-scale equations for the hurricane embryo are derived and
discussed in § 3. A simplified cloud physics scheme for deep convection is introduced
in § 4 and utilized there to study moist axisymmetric plumes in the BHT models.
Section 5 contains a simple application in periodic geometry involving the effects of
mesoscale vertical shear and moist microscale hot towers on vortex intensification.
Concluding discussion follows in § 6. Next, we provide a brief summary of the
simplified multi-scale asymptotic models for the hurricane embryo derived in § 3; this
summary should be useful for those readers who are not interested in all the technical
details.

1.1. Simplified multi-scale model for the hurricane embryo

The multi-scale model consists of three simplified dynamical models which interact on
the time scales in (1.1) and (1.2), and are depicted schematically in figure 1. The BHT
model which operates on the microscale in (1.1) (see § 3.1) and the balanced mesoscale
vortex (BMV) model which operates on the mesoscales in (1.2) (see § 3.3) involve active
moisture dynamics coupled with vertical vorticity dynamics but the gravity waves on
these scales, respectively, are systematically removed. Besides moisture processes, the
dynamical core for both the BHT and BMV models involves the simplified canonical
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balanced model

Duh

Dt
+ f u⊥

h = −∇hp + Fu,

N2(z)w = Sθ ,

∇h · uh + wz = 0,

⎫⎪⎪⎬
⎪⎪⎭ (1.3)

where N(z) is the buoyancy frequency and Sθ and Fu are mass (heat) and
momentum sources, respectively. In (1.3), (uh, w) = (u, v, w) is the total velocity where
D/Dt = ∂/∂t+uh · ∇h+w∂/∂z, u⊥

h =(−v, u)T , f is a constant non-dimensional vertical
rotation component and ∇h· and ∇h are the horizontal divergence and gradient.
Vorticity amplification in the canonical balanced model in (1.3) with prescribed
heat sources as well as elementary models for the hurricane embryo are discussed
systematically in Majda, Mohammadian & Xing (2008). In both the BHT and BMV
models, the heat sources are determined by suitable fluctuations and space–time
averages, respectively, from the moist processes.

The embryo consists of both the large-scale variables and the small-scale variables
in BHT. The BMV model provides both the large-scale ambient flow environment for
the embryo as well as the model to observe the transition to cyclogenesis; both the
effects of rotation, f �= 0, and three-dimensional self-advection are non-zero in the
BMV model while the momentum forcing Fu contains turbulent eddy flux divergences
from both the BHT model and the moist mesoscale wave (MMW) model. The BMV
model contains the competition between both the effect of moisture processes and
the upscale mechanical turbulent transport processes as well as nonlinear advection
in a simplified balanced model for the transition to cyclogenesis.

The BHT model for the fluctuations on the microscales in (1.1) is a version of (1.3)
with f ≡ 0 but crucially the nonlinear advection of horizontal momentum contains
horizontal advection by the BMV and MMW models as well as self-advection;
similarly, the fluctuating source terms, Sθ , in (1.3) for the BHT model involve heating
from moist processes that is effected by the large-scale moist background profile
in MMW and BMV. See § 4 on moist axisymmetric plumes in the BHT model for
a simple illustration. Both the BHT and BMV models exploit simplified dynamics
which is valid on the scales in (1.1) and (1.2) (Sobel, Nilsson & Polvani 2001; Majda
et al. 2008).

The MMW model operates on the mesoscale length scale in (1.2) but the more
rapid time scale in (1.1) (see figure 1 and § 3.2); the MMW model involves simplified
mesoscale fluctuations of moisture as well as linear hydrostatic gravity wave motion
driven by heat sources from moisture and fluctuations from eddy flux divergences
of momentum from BHT. The MMW model allows for a simplified assessment of
mesoscale gravity waves driven by moisture processes in the embryo.

2. Preliminary background
2.1. The moist anelastic equations

Here the moist non-hydrostatic anelastic equations with bulk cloud microphysics
(Lipps & Hemler 1982; Grabowski & Smolarkiewicz 1996) are utilized as the basic
equations for the microscale dynamics. With suitable non-dimensional units explained
below (Klein & Majda 2006), which have the space-time scales

Lm = 10 km and Tm = 15 min, (2.1)
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with

[uh] = [w] = 10 m s−1,

these equations are given by the dynamical core

Duh

Dt
+ εf u⊥ = −∇hp,

Dw

Dt
= −pz + ε−1θ + (ε̄qv − qr − qc),

Dθ

Dt
+ N2(z)ε−1w = ε−1L

θ0

p0

(Cd − Er ),

divhuh + ρ−1(ρw)z = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.2)

with

D

Dt
=

∂

∂t
+ uh · ∇h + w

∂

∂z
,

and the cloud dynamic equations

Dqv

Dt
= −Cd + Er,

Dqc

Dt
= Cd − Ar,

Dqr

Dt
− 1

ρ

∂

∂z
(ρVT qr ) = Ar − Er.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.3)

In (2.2), ρ(z), N2(z), θ0(z) and p0(z) are the non-dimensional versions of the dry
statically stable vertical profile (Majda & Klein 2003; Klein & Majda 2006). Here
ε̄ + 1 is the ratio of gas constants of water vapour and dry air. The Froude number
ε = v/(NLm) is O(ε) with the typical velocity of 10 m s−1, the length scale Lm of 10 km
and the standard atmosphere value N = 10−2 s−1. The potential temperature in (2.2)
is scaled as a small deviation from hydrostatic balance; that is, the units of θ are 3 K,
which compares with a dry lapse rate of 30 K over 10 km; thus ε ≈ 0.1 in (2.2) (see
Klein & Majda 2006; Majda 2007a; Majda et al. 2008, for detailed information). On
the 15 min time scale in (2.1), the effect of rotation is weak. This is reflected in the
horizontal momentum equation in (2.2) where the term εf is the vertical component of
the Coriolis effect of rotation in these time units with f = sin φ and φ a given latitude
(Klein 2000). The quantities qv , qc and qr are the mixing ratios for cloud vapour, water
and rain, respectively, rescaled by the factor ε−2. This rescaling developed in Klein &
Majda (2006) renders the potential temperature equation in (2.2) dimensionless with
order 1 latent heat prefactor L and simultaneously guarantees that the condensation
of cloud vapour, Cd , evaporation of rain, Er , and the conversion of cloud water to
rain by both autoconversion and collection, Ar , as well as the fall velocity, VT , are
order 1 processes on the time scales in (2.1). While the detailed forms of Cd , Er and Ar

(Emanuel 1994; Grabowski & Smolarkiewicz 1996) are not needed for the discussion
here, the tacit standard assumption utilized in achieving a single time scale governing
the moisture source terms in (2.2) and (2.3) is that the very fast processes associated
with supersaturated water vapour are equilibrated by constraining the cloud vapour
to always lie below or equal to saturation (Lipps & Hemler 1982; Grabowski &
Smolarkiewicz 1996; Klein & Majda 2006). For simplicity in exposition, all other
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Parameter Units Description

L 10 km Length scale
t 15 min Time scale
u, w 10 km/15 min ≈ 10 m s−1 Horizontal and vertical velocity scale
θ 3 K Potential temperature scale

Table 1. The basic units for non-dimensionalization.

source terms and dissipation in (2.2) and (2.3) have been set to zero; they are readily
added in the analysis below.

The basic non-dimensional units are listed in table 1. The heat release from moisture
on these microscales can be very strong, of order 30 K/15 min. Such large values
are actually consistent with the hot towers on 10 km scales present in the hurricane
embryo (Hendricks et al. 2004; Montgomery et al. 2006). The order 10 m s−1 horizontal
velocities allow for significant acceleration of the winds as well as moderate shear
which are both features of the embryo.

2.2. Multiple scale asymptotics

Here the focus is on systematic multi-space/multi-time scale asymptotic solutions of
(2.2) and (2.3) on the microscales in (2.1) and mesoscales, LM and TM , with

LM = ε−1Lm = 100 km, TM = ε−1Tm = 2.5 h. (2.4)

With (2.1) and (2.4) as the essential spatiotemporal scales, general asymptotic solutions
of (2.2), (2.3) are developed with the form

uh = ūh(εx, z, εt, t) + u′
h(εx, x, z, εt, t) + ε(ūh,1 + u′

h,1) + O(ε2),

w = w′ + ε(w̄1 + w′
1) + O(ε2),

θ = ˜̄θ + ε(〈θ̄1〉 + θ ′
1) + O(ε2),

p = ε−1 ˜̄p−1 + (〈p̄〉 + p′) + O(ε),

q = q̄ + q ′ + ε(q̄1 + q ′
1) + O(ε2),

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.5)

where q = (qv, qc, qr ). Only the central non-zero terms developed below are listed in
(2.5) and the notation is developed and explained next. In (2.5) the larger scale longer
space–time variables,

X = εx, T = εt, (2.6)

account for mesoscale modulations. In accordance with conventional multiple-scale
asymptotic analysis (Klein 2000; Majda 2003, 2007a ,b; Klein & Majda 2006), given a
general function f (εx, x, εt, t), the spatial and time averages of f over the microscales
are given, respectively, by

f̄ (X, T , t) = limL→∞
1

(2L)2

∫ L

−L

∫ L

−L

f (X, x, T , t) dx dy,

〈f 〉(X, x, T ) = limT̃ →∞
1

2T̃

∫ T̃

−T̃

f (X, x, T , t) dt.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.7)

With the first equation in (2.7), a function f admits the decomposition f = f̄ +f ′ with
f ′ = 0 which gives a conventional separation of the terms in (2.5) into their spatial
means and fluctuations. Note that the spatiotemporal average involves variations only
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on the larger and longer mesoscales in (2.4), i.e.

〈f̄ 〉(X, z, T ). (2.8)

For a function f (X, T , t) involving the mesoscale in space and the two time scales
with time average 〈f 〉(X, T ), the fluctuations over the faster time scale are given by

f̃ (X, T , t) = f − 〈f 〉. (2.9)

From the above discussion, a general function f (X, x, T , t) has the decomposition

f (X, x, T , t) = 〈f̄ 〉(X, T ) + ˜̄f (X, T , t) + f ′(X, x, T , t). (2.10)

Note that the z-dependence has been suppressed for simplicity in the present
discussion which defines all of the terms in (2.5). In the next section, systematic
asymptotic equations are developed for both the fluctuations and the mesoscale
averages, 〈ūh〉(X, z, T ), etc. from (2.2) and (2.3) which are the quantities of interest.
In the multi-scale procedure utilized in the next section the space–time gradient of
f (εx, x, εt, t) is calculated according to the chain rule as

ε∇Xf + ∇′f, ε
∂f

∂T
+

∂f

∂t
, (2.11)

where the notation ∇′f = (∂f/∂x, ∂f/∂y) denotes the horizontal gradient of the
fluctuations.

One of the central principles of multi-scale asymptotics is to guarantee that
secular terms are suppressed in order to generate a valid asymptotic representation;
simultaneously, the systematic use of these procedures guarantees that a sequence
of model equations emerges from the analyses (see e.g. Klein 2000; Majda 2003;
Majda & Klein 2003; Majda 2007a, b; Majda & Xing 2009). A necessary condition
for the validity of the asymptotic expansion in (2.5) is that the lower-order terms
grow slower than linear, sublinear, in the small-scale and fast variables (x, t). In the
next section, we utilize the following elementary averaging principle to suppress such
secularities: if f (X, x, T , t) has sublinear growth then〈

∂f

∂t

〉
= 0, ∇xf = 0. (2.12)

The simplest illustration of these concepts is provided by the multi-scale expansion
of the anelastic constraint in (2.2) given by mass conservation,

divx uh + ε divX uh +
1

ρ
(ρw)z = 0. (2.13)

By using the second solvability condition in (2.12) and taking the spatial average, we
obtain

ε divX ūh +
1

ρ
(ρw̄)z = 0. (2.14)

The only way to self-consistently solve this equation in a non-trivial fashion is to
have the weaker vertical velocity,

w̄ = ε w̄1, (2.15)

on the mesoscales. This both justifies the ansatz for the vertical velocity in (2.5) and
demonstrates the procedures utilized extensively in the next section.
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3. Multi-scale equations for the hurricane embryo
Here we derive a system of multi-scale models which highlight the central dynamical

features of the hurricane embryo in a simplified fashion. We begin with the balanced
equations for fluctuations on the 10 km/15 min mesoscales.

3.1. Balanced hot tower dynamics on microscales

The derivation here involves straightforward scaling and is similar to the one in
Majda et al. (2008). First, the order ε−1 contribution from the fluctuating part of the
potential temperature equation in (2.2) yields the balance

N2(z)w′ = L
θ0

p0

(C ′
d − E′

r ). (3.1)

To derive the remaining equations for the microscale fluctuations, it is convenient to
introduce the advection operator

D′

Dt ′ =
∂

∂t
+ (ūh + u′

h) · ∇′
h + w′ ∂

∂z
, (3.2)

which includes the mesoscale mean horizontal velocity. Note from (2.5) and (2.15) that
the mesoscale vertical velocity is lower order. Inserting the ansatz from (2.5) into (2.2),
the bounded leading-order terms satisfy the equations for microscale fluctuations:

D′u′
h

Dt ′ = −∇′
hp

′ − w′ ∂ ūh

∂z
+ ρ−1(ρu′

hw
′)z,

divx u′
h + ρ−1(ρw′)z = 0,

D′q ′
v

Dt ′ = −C ′
d + E′

r − w′ ∂q̄v

∂z
+ ρ−1(ρq ′

vw
′)z,

D′q ′
c

Dt ′ = C ′
d − A′

r − w′ ∂q̄c

∂z
+ ρ−1(ρq ′

cw
′)z,

D′q ′
r

Dt ′ − 1

ρ

∂

∂z
(ρVtq

′
r ) = A′

r − E′
r − w′ ∂q̄r

∂z
+ ρ−1(ρq ′

rw
′)z.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.3)

As emphasized in (2.5), the weaker potential temperature fluctuations εθ ′
1 can be

determined afterwards from q ′, u′
h, w′ and p′ by

D′w′

Dt ′ = −p′
z + θ ′

1 + (ε̄q ′
v − q ′

c − q ′
r ) + ρ−1(ρw′2)z. (3.4)

Note that when the large-scale advection effects are zero and the heat sources
are prescribed, the equations in (3.1) and (3.3) reduce to the BHT models without
rotation studied recently in Majda et al. (2008), where we have shown how a hot tower
can generate large vorticity in a suitable preconditioning. We have obtained useful
elementary insight into the role of hot towers in cyclogenesis, by carefully studying
the role of various effects in generation, amplification, and dissipation of vorticity in
hot towers. More detailed information can be found in Majda et al. (2008). Next, we
develop simplified equations for the mesoscale variations of order 100 km on the fast,
order 15 min time scale.

3.2. Moist mesoscale wave dynamics

The strength of the fluctuations in the potential temperature crucially affects the
dynamics on the mesoscales and, in particular, the generation of moist gravity waves.
First, in order to systematically implement the secularity conditions discussed at the
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end of § 2, it is useful to rewrite the potential temperature equation from (2.2) in
conservation form and then take the spatial average to obtain

ε
∂θ̄1

∂t
+ ε

∂θ̄

∂T
+ εdivX (ūhθ̄) + ε2divX (u′

hθ
′
1)

+ ερ−1(ρw̄1θ̄ )z + ερ−1(ρw′θ ′
1)z +

∂θ̄

∂t
= S̄θ − N2w̄1. (3.5)

There is a crucial assumption in (3.5), namely

Assumption 1:

ε−1 Lθ0

p0

(C̄d − Ēr ) ≡ S̄θ is bounded. (3.6)

Recall that with the non-dimensionalization in (2.2), the heating terms in (2.2) are
allowed to have units of 30 K/15 min; on the microscales for BHT, such strong heating
is consistent with the observed hot towers (Hendricks et al. 2004; Montgomery et al.
2006). Hot towers involve intense localized heating but their large-scale average
mesoscale heating is much weaker and typically well within the 3 K/15 min bounds
implied by (3.6). Assumption (3.6) allows for the weaker averaged mesoscale effects of
sources from moisture of 3 K/15 min which is consistent in general with the weaker
mesoscale impact of convection (Majda & Xing 2009, and references therein). With
this assumption, from (3.5) we deduce that the leading-order bounded terms in (3.5)
satisfy

∂θ̄

∂t
= S̄θ − N2w̄1. (3.7)

Equation (3.7) naturally yields the equation for fluctuations,

∂ ˜̄θ

∂t
= ˜̄Sθ − N2 ˜̄w1. (3.8)

On the other hand, the solvability condition for (3.7), 〈∂θ̄/∂t〉 =0, to avoid secular
terms in the expansion automatically imposes the requirement

N2〈w̄1〉 = 〈S̄θ〉, (3.9)

which links the mesoscale time-averaged vertical velocity with the time-averaged
heating from (3.6).

The non-zero temperature fluctuation in (3.8) drives hydrostatically balanced moist

gravity waves. Since ˜̄θ �= 0, the leading order ε−1 vertical momentum equation requires
a hydrostatic pressure, ε−1p̄−1, in order to balance this effect, i.e.

(p̄−1)z = ˜̄θ. (3.10)

In similar fashion to that illustrated in (3.5) for the potential temperature, the order
1 momentum equation is given by Klein & Majda (2006) and Majda & Xing (2009):

∂ ūh

∂t
= −∇X p̄−1 − ρ−1(ρw′u′

h)z. (3.11)
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Similarly, the order 1 moisture equations are

∂q̄v

∂t
= −C̄d + Ēr − ρ−1(ρq ′

vw
′)z,

∂q̄c

∂t
= C̄d − Ār − ρ−1(ρq ′

cw
′)z,

∂q̄r

∂t
− 1

ρ

∂

∂z
(ρVt q̄r ) = Ār − Ēr − ρ−1(ρq ′

rw
′)z.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.12)

Equations (3.10), (3.11) and (3.12) together with

∂ ˜̄θ

∂t
= ˜̄Sθ − N2 ˜̄w1,

divx ūh + ρ−1(ρw̄1)z = 0

⎫⎬
⎭ (3.13)

constitute the MMW dynamics discussed earlier. These equations involve linear
hydrostatic gravity wave dynamics and rapidly forced vertical vorticity modes
on mesoscales driven by spatially averaged fluctuating heating and turbulent flux
divergences from the microscales. The perceptive reader will notice that we still need
equations for 〈ūh〉, 〈θ̄1〉, etc. in order to close the systems derived in §§ 3.1 and 3.2. We
develop the long time mesoscale equations next to achieve this.

3.3. Balanced mesoscale vortex dynamics

First, we use the secularity constraint in (3.11), 〈∂ ūh/∂t〉 =0, to derive the leading-
order momentum equation

∇X 〈p̄−1〉 = −ρ−1(ρ〈w′u′
h〉)z, (3.14)

while the time average of the hydrostatic balance constraint in (3.10) yields

〈p̄−1〉z = 0. (3.15)

The only way to satisfy both (3.14) and (3.15) in general is to have a weaker time-
averaged eddy momentum flux divergence and make

Assumption 2:

−ρ−1(ρ〈w′u′
h〉)z = ε 〈S̄u〉(X, T ), (3.16)

which guarantees that (3.14) and (3.15) are automatically satisfied with 〈p̄−1〉 ≡ 0. This
justifies the ansatz for the pressure in (2.5) and guarantees that no secular gravity
waves are generated on the mesoscales to leading order on the 2.5 h time scale.
Similarly, averaging the moisture equations in (3.12) imposes the moisture source
constraints:

−〈C̄d〉 + 〈Ēr〉 − ρ−1(ρ〈q ′
vw

′〉)z = ε〈S̄qv
〉,

〈C̄d〉 − 〈Ār〉 − ρ−1(ρ〈q ′
cw

′〉)z = ε〈S̄qc
〉,

1

ρ

∂

∂z
(ρVt〈q̄r〉) + 〈Ār〉 − 〈Ēr〉 − ρ−1(ρ〈q ′

rw
′〉)z = ε〈S̄qr

〉

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.17)

for each vertical level z. These large-scale balances for the spatiotemporal averages in
(3.16) and (3.17) need to be satisfied in order for the asymptotic procedure to remain
valid; these equations are satisfied only if the space–time average is sufficiently weak,
i.e. the appropriate large-scale space–time area fraction over the deep convective
updrafts/downdrafts is sufficiently small (Klein & Majda 2006).
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The derivation of the equations for the coarse-grained mesoscale averages is
straightforward and only requires a repetition of the derivation for equations (3.6)–
(3.10) from Majda (2007a). Thus time-averaging analysis for the order ε moisture
equations yields

∂

∂T
〈q̄v〉 = 〈S̄qv

〉 − divX 〈q ′
vu′

h〉 − 1

ρ
div(ρ〈q̄v v̄〉),

∂

∂T
〈q̄c〉 = 〈S̄qc

〉 − divX 〈q ′
cu′

h〉 − 1

ρ
div(ρ〈q̄cv̄〉),

∂

∂T
〈q̄r〉 = 〈S̄qr

〉 − divX 〈q ′
r u′

h〉 − 1

ρ
div(ρ〈q̄r v̄〉),

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.18)

with v̄ = (ūh, w̄1). In similar fashion, the order ε mesoscale horizontal momentum
equation becomes

∂

∂T
〈ūh〉 + f 〈ūh〉⊥ = −∇X 〈p̄〉 + 〈S̄u〉 − divX 〈u′

h : u′
h〉 − 1

ρ
div〈ρv̄ : ūh〉 (3.19)

with (ρv : uh)i = ρvuh,i for i = 1, 2.
These equations for the mesoscale coarse-grained horizontal momentum are

supplemented by (3.9) and the anelastic constraint,

N2〈w̄1〉 = 〈S̄θ〉,
divX 〈ūh〉 + ρ−1(ρ〈w̄1〉)z = 0.

}
(3.20)

Finally, the leading-order space–time average of the vertical momentum equation
gives potential temperature fluctuations of the form ε〈θ̄1〉 with

〈θ̄1〉 = 〈p〉z − ε̄〈q̄v〉 + 〈q̄c〉 + 〈q̄r〉 + ρ−1〈ρw′2〉z (3.21)

in a similar fashion to that discussed earlier for the BHT dynamics (Majda et al.
2008). Equations (3.18), (3.19), (3.20) and (3.21) are the complete set for moist BMV
dynamics.

The horizontal momentum equation (3.19) can be written in a more standard form
by utilizing the identity

1

ρ
div〈ρv̄ : ūh〉 = 〈ūh〉 · ∇X 〈ūh〉 + 〈w̄1〉 ∂

∂z
〈ūh〉 +

1

ρ
div〈ρ˜̄v : ˜̄uh〉. (3.22)

Thus, if we introduce the coarse-grained advective derivative

D

DT
=

∂

∂T
+ 〈ūh〉 · ∇X + 〈w̄1〉 ∂

∂z
, (3.23)

and use (3.22), the horizontal momentum equation from (3.19) becomes

D

DT
〈ūh〉 + f 〈ūh〉⊥ = −∇X 〈p̄〉 + 〈S̄u〉 − divX〈u′

h : u′
h〉 − 1

ρ
div〈ρ˜̄v : ˜̄uh〉. (3.24)

The mesoscale averaged equations (3.20) and (3.24) are forced equations for rotating
vertically sheared horizontal flow with mass sources as discussed in detail in Majda
et al. (2008). These equations are driven by the space–time mesoscale averaged heat
sources from (3.6) and (3.20), as well as eddy fluxes of momentum from both the
microscale BHT dynamics and the MMW dynamics. The dynamical resemblance of
BHT dynamics on the microscales from (2.1) and BMV dynamic equations on the
mesoscales from (2.3) reflect the dynamical self-similarity principles discussed earlier
(Majda 2007b; Majda et al. 2008; Majda & Xing 2009).
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4. Simplified moist balanced hot tower models
The goal here is first to introduce a simplified set of equations describing the bulk

microphysics in (2.3) yet capturing key features of deep convection qualitatively. Then
axisymmetric moist hot tower solutions of the BHT equations from (3.1), (3.2) and
(3.3) are developed to illustrate that these simpler models capture key features of moist
deep convective dynamics qualitatively. In the same spirit of qualitative simplicity we
utilize the approximation with constant entry throughout the remainder of the paper
although this is not necessarily accurate for deep convection in a qualitative sense.

4.1. Simplified cloud physics for deep convection

Clouds form when the cloud vapour fraction, qv , exceeds the saturation value, qvs; in
general, qvs is determined by the Clausius–Clapeyron equation as a nonlinear function
of temperature (Emanuel 1994; Klein & Majda 2006). For a typical averaged vertical
profile of temperature, a mean sounding, qvs(z), is a decreasing function of height
and this produces significant asymmetries between upward and downward motion in
deep convection. Here, in the spirit of Boussinesq approximation, we assume that qvs

is a piecewise-linear decreasing function of height alone so that

qvs =

⎧⎪⎨
⎪⎩

qvs0 − αvsz, if 0 � z �
qvs0

αvs

≡ 1.2,

0, if
qvs0

αvs

< z.
(4.1)

Other key features to capture in a simplified cloud physics model are the latent heating
of condensation, Cd , which causes air to rise and the evaporative cooling, Er , of rain
falling through subsaturated air which creates downdrafts. We make the simplest
functional choices for the condensational heating, Cd , and evaporative cooling, Er ,
consistent with this intuition,

Cd = τ−1
d (qv − qvs(z))

+,

Er = τ−1
r (qvs(z) − qv)

+qr .

}
(4.2)

In (4.2) and below, (∗)+ denotes the non-negative part of the number ∗, while τd , τr

are relaxation times for these two processes. The basic functional forms in (4.2) have
similar qualitative features to much more complex bulk cloud microphysics models
(Emanuel 1994; Grabowski & Smolarkiewicz 1996; Klein & Majda 2006). The mass
fraction of cloud water, qc, is typically an order of magnitude smaller than qv and qr

with a rapid conversion process into rain; here we simplify the dynamics in (2.3) by
imposing the steady state approximation, Cd ≡ Ar , which eliminates the cloud water,
qc, from the dynamics. The simplified equations for qv and qr in (2.3) with (4.1), (4.2)
constitute the simplified cloud physics equations which are utilized in this section and
the remainder of the paper. In these simplified models, the cloud water qc, the water
loading, is identified with (qv − qvs(z))

+, the saturation vapour excess.
Given an averaged mean vertical profile for moisture, q̄v(z), there clearly should

be a stronger potential for moist deeper convection to occur as the non-negative
saturation deficit, δ = qvs(z) − q̄v(z), decreases so the air is more moist. In the present
context, for simplicity, we assume that

q̄v(z) = (qvs(z) − δ)+ , (4.3)

where δ, the saturation deficit, is independent of height. Clouds are created in the
mean environment when initially there is a bubble of moist air at low levels which
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Figure 2. Illustration of q̄v(z), qvs(z) and qv(z). (a) Plot of q̄v(z) (solid) and qvs(z) (dashed)
with δ = qvs0/4; (b) Plot of qv(z) (solid) and qvs(z) (dashed) with a = δ + 0.8.

exceeds saturation (Grabowski & Smolarkiewicz 1996). Thus, the typical initial data
that are used in the numerical studies here for deep hot tower development have the
vertical structure

q0
v = q̄v(z) + q ′

v(z), q0
r = 0, (4.4)

where q ′
v(z) has support at low-levels above the boundary layer, between 1 and 3 km

(i.e. 0.1 and 0.3). A simple choice for q ′
v(z) utilized below is

q ′
v(z) = a (10(z − 0.1))2 (10(z − 0.3))2 , (4.5)

which has maximum value a. See figure 2 for the graphical interpretation of (4.3),
(4.4) and (4.5). How far the initial perturbation rises in the vertical and generates a
shallow or deep hot tower depends on three factors:
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Cloud physics parameters:
τd , τr , relaxation times; L, latent heat prefactor; VT , falling velocity for rain.

(4.6a)

Background vertical profile:

qvs(z) and δ, saturation deficit in q̄v(z). (4.6b)

Initial perturbation parameter:

a, amplitude of perturbation; h1, h2, height of perturbation q ′
v(z). (4.6c)

To focus on the effect of the background vertical profile and the cloud physics
parameter, we always fix a = 0.8 + δ, h1 = 0.1, h2 = 0.3, as illustrated in figure 2. This
choice of a always guarantees a fixed amount of low-level cloud water independent
of the saturation deficit, δ, in order to initiate a hot tower.

Here we assume that the moist BHT model derived in (3.1)–(3.3) operates on only
the single scales of 10 km and 15 min, with the Boussinesq approximation, ρ = 1,
and the simplified cloud physics in (4.2). Thus, these equations become the moist
BHT model:

Duh

Dt
= −∇hp,

divhuh + wz = 0,

w = L(Cd − Er ),

Dqv

Dt
= −Cd + Er = −w

L
,

Dqr

Dt
− ∂

∂z
(VT qr ) = Cd − Er =

w

L
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.7)

with (4.2) for Cd , Er and D/Dt = ∂/∂t + uh · ∇h + w∂/∂z. Since the vertical velocity
w in (4.7) is determined from (4.2) as a specific function of qv and qr , i.e.

w = L
(
τ−1
d (qv − qvs(z))

+ − τ−1
r (qvs(z) − qv)

+qr

)
, (4.8)

we can regard (4.7) as nonlinear hyperbolic equations for qv , qr with source terms
nonlinearly coupled to the first three equations for vertically sheared horizontal flow
in (4.7) (Majda et al. 2008). Note that from (4.8) there are updrafts (downdrafts) only
for qv > qvs(z), (qv < qvs(z) and qr > 0) with their magnitude controlled by τ−1

d (τ−1
r )

individually and L overall. Also from the equations for qv , qr in (4.7), rising air depletes
qv (creates qr ) and descending air depletes qr (creates qv) in the simplified model. This
provides simple intuition for the role of all the cloud physics parameters in (4.6) except
the fall velocity of rain, VT . Simple numerical experiments (omitted here) show that as
VT increases, the amount of rain qr decays faster at any fixed vertical level while the
magnitude of the downdrafts increases. Below, for illustration, we show results for the
cloud physics parameters, L =0.24, VT =0.5 (5 m s−1), τr = τd = 0.15 which generate
hot towers with reasonable vertical velocities in both updrafts and downdrafts.

4.2. Axisymmetric moist hot towers in the BHT model

Here we consider axisymmetric solutions of (4.7) so that qv , qr and w, uh are
functions of r = |xh|, z, t alone with uh = ur er + uθ eθ in usual cylindrical coordinates.
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The conservation form for axisymmetric solutions of (4.7) becomes

∂(rqv)

∂t
+

∂(rurqv)

∂r
+

∂(rwqv)

∂z
= (−Cd + Er )r,

∂(rqr )

∂t
+

∂(rurqr )

∂r
+

∂(r(w − VT )qr )

∂z
= (Cd − Er )r,

w = L(Cd − Er ),

ur = −1

r

∫ r

0

s
∂w

∂z
ds,

∂ (ruθ )

∂t
+

∂ (ruruθ )

∂r
+

∂ (rwuθ )

∂z
+ uruθ = 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.9)

Note that the first four of equations (4.9) determine axisymmetric hot towers in the
BHT model and are solved completely independently from the last equation in (4.9)
for angular momentum. Here we assume uθ ≡ 0 for simplicity. As in Majda et al.
(2008), we can also study the effect of hot towers on ambient vorticity through the
last equation in (4.9).

A first-order upwind finite volume scheme is employed to simulate (4.9) on a
staggered grid. The domain size is set as [0, 2] × [0, 1.5]. A grid of 200 × 200
computational cells is employed; a uniform vertical spacing is chosen and in the
horizontal direction, a variable grid spacing with a very high resolution close to the
centre is used which was defined according to rj = R (j/M)2 where M =200 is the total
number of grid points in the horizontal direction, rj is the horizontal coordinate of
the j th grid points and R =2 is the radius of the modelled domain. A time step
of 	t = 0.00225 was employed. No significant changes were observed with higher
temporal or spatial resolutions. Extrapolation boundary conditions are used at all
boundaries. To keep the two variables qv , qr non-negative, we impose qv = max(qv, 0),
qr = max(qr, 0) after each time step (Grabowski & Smolarkiewicz 1996).

The initial data in all the numerical experiments have the form described earlier in
(4.4) and (4.5) but with a cylindrical geometry so that

q0
r = 0, q0

v = q̄v(z) + q ′
v(z)φ(r), (4.10)

with q ′
v(z) determined from (4.5) and φ(r) = cos(πz) for r < 0.5 and zero otherwise.

We utilize the fixed cloud physics parameters discussed below (4.8) with these initial
data in a series of numerical experiments for axisymmetric plume dynamics described
in the next paragraph. The value, qvs0, from (4.1) is fixed at qvs0 = 5 and the saturation
deficit is varied from δ = qvs0/4 to δ = qvs0/32 to δ =0 representing relatively dry, moist
and saturated background profiles, respectively. The vertical velocity w and rain qr for
the developing axisymmetric hot towers in these three cases are shown in figures 3–6,
at times t =1, 2, 3, 5. In the case δ = qvs0/4 with the relatively dry troposphere from
figure 3, the plume hardly rises with extremely weak velocities and negligible rainfall.
For the case with δ = qvs0/32 with a moist troposphere from figures 4 and 5, the plume
rises to nearly 6 km in this time interval with significant updraft velocities and some
rainfall. The saturated case, δ = 0 with a moist troposphere from figure 6, has signi-
ficant vertical velocities and the hot tower rises to nearly 10 km in this time interval
with significant rainfall, a factor of 4 larger than in figure 5. These three prototype
simulations for axisymmetric moist hot towers in the BHT model mimic qualitatively
what is expected for moist deep hot tower development in, respectively, a dry, moist
and saturated mean background state in a qualitative fashion (Emanuel 1994) even
though there is simplified cloud physics and balanced dynamics in the BHT model.
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Figure 3. Contours and shading of the vertical velocity w and the mixing ratio of rain qr at
different times in the test case with δ = qvs0/4. (a, b) t = 1; (c, d ) t = 5; (a, c) w; (b, d ) qr .

5. A prototype model: mesoscale vertical shear and microscale hot towers
interacting in a vortical environment

The goal here is to utilize the simplified cloud models developed in § 4, together with
the Boussinesq approximations ρ ≡ 1, N2 ≡ 1 to illustrate solutions of the multi-scale
model from § 3. The simplest setup which illustrates facets of the multi-scale system
derived in § 3 is to utilize a periodic domain of length and width of order 100 km
so that the mesoscale variables are just the non-zero mean values over the periodic
box. Since in this special geometry, trivially divX ūh ≡ 0, we need to enforce that the
mesoscale vertical velocity w̄1 satisfies w̄1 ≡ 0; thus, we impose the requirements

S̄θ = ε−1L(C̄d − Ēr ) and 〈S̄θ〉 = O(ε) (5.1)

for self-consistency in periodic geometry. These are monitored diagnostically in the si-
mulations below. Thus in the present context, the MMW equations from § 3.2 reduce to

∂ ūh

∂t
= −(w′u′

h)z,

∂q̄v

∂t
= −C̄d + Ēr − (q ′

vw
′)z,

∂q̄r

∂t
− ∂

∂z
(Vt q̄r ) = C̄d − Ēr − (q ′

rw
′)z,

∂θ̄

∂t
= S̄θ ,

(p̄−1)z = ˜̄θ.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.2)
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Figure 4. Contours and shading of the vertical velocity w at different times in the test case
with δ = qvs0/32. (a) t = 1; (b) t = 2; (c) t = 3; (d ) t = 5.

Note that the restoring forces due to buoyancy are absent, and no gravity waves
are generated in this special environment. Similarly, the large-scale BMV dynamics
derived in § 3.3 satisfies w̄1 ≡ 0 so that the BMV dynamics in periodic geometry
assumes the simple form:

∂Uh

∂T
+ f U⊥

h = −(〈w′u′
h〉)z, Uh(z, t) = 〈ūh〉,

∂

∂T
〈q̄v〉 = −

〈
C̄d

〉
+

〈
Ēr

〉
− (

〈
q ′

vw
′
〉
)z,

∂

∂T
〈q̄r〉 − ∂

∂z

(
Vt〈q̄r〉

)
=

〈
C̄d

〉
−

〈
Ēr

〉
− (

〈
q ′

rw
′
〉
)z,

〈θ̄1〉 = 〈p〉z − ε̄〈q̄v〉 + 〈q̄r〉 + ρ−1〈ρw′2〉z.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.3)

Thus, the BMV dynamics in this special set-up allows for large-scale vertical shears
which respond to both eddy momentum flux divergences and the effects of rotation.
In the present context, the BHT dynamics for microscale fluctuations from § 3.2
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Figure 5. Contours and shading of the mixing ratio of rain qr at different times in the test
case with δ = qvs0/32. (a) t =1; (b) t = 2; (c) t =3; (d ) t =5.

becomes

Du′
h

Dt ′ = −∇hp
′ − w′ ∂ ūh

∂z
+ (u′

hw
′)z,

divx u′
h + w′

z = 0,

w′ = L(C ′
d − E′

r ),

D′q ′
v

Dt ′ = −C ′
d + E′

r − w′ ∂q̄v

∂z
+ (q ′

vw
′)z,

D′q ′
r

Dt ′ − ∂

∂z
(Vtq

′
r ) = C ′

d − E′
r − w′ ∂q̄r

∂z
+ (q ′

rw
′)z,

D

Dt ′ =
∂

∂t
+ (ūh + u′

h) · ∇h + w′ ∂

∂z
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.4)

Equations (5.2)–(5.4) are the simplified model dynamics studied here. The effect of
mesoscale vertical shears on cyclogenesis in the hurricane embryo is an important
practical topic (Emanuel 1989; Hendricks et al. 2004; Montgomery et al. 2006) and
the advection by the shear in (5.4) for the microscale BHT dynamics as well as the feed
back on the mesoscale shear in (5.2) and (5.3) give a simplified balanced context for
this effect in the embryo. Here we simply use this model to demonstrate coupled multi-
scale behaviour in this prototype setting. Of course, we need to check the required
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Figure 6. Contours and shading of the vertical velocity w and the mixing ratio of rain qr at
different times in the test case with δ =0. (a, b) t = 1; (c, d ) t = 5; (a, c) w; (b, d ) qr .

self-consistency from Assumption 2 in (3.16) and (5.2) as time proceeds in order to
ensure the asymptotic validity of the model equations. The simulations below begin
with a background moisture profile with a given saturation deficit, δ � 0; δ = qvs0/32
is used below. Perturbations of the low-level moisture with the same form q ′

v(z)φ(r)
from (4.4)–(4.6) and (4.10) at random locations, xj , with r = |x − xj | are added every
10 units (2.5 h) to mimic the seeding of random hot towers as illustrated earlier in
§ 4.2.

5.1. Vertical vorticity budgets and the numerical methods

Obviously, the main dynamical core in the numerics involves the solution of (5.4).
To solve this equation numerically, we utilize (Majda et al. 2008) the horizontal
Helmholtz decomposition

u′
h = ∇hΦ + ∇⊥

h Ψ,

	Ψ = ω′, ω′ vertical vorticity,

	Φ = divx u′
h = −w′

z,

⎫⎬
⎭ (5.5)

and take the horizontal curl of (5.4) to obtain the vertical vorticity equation

∂ω′

∂t
+ (ūh + u′

h) · ∇hω
′ + w′ω′

z = ω′w′
z − ∇⊥

h w′ · (ūh + u′
h)z (5.6)



Moist multi-scale models for the hurricane embryo 497

with w′ specified through the third equation in (5.4). The two quadratic terms on
the left-hand side of (5.6) represent horizontal and vertical advection of vorticity,
respectively. The terms on the right-hand side represent the production terms for
vertical vorticity with ω′w′

z the important vortex stretching term and the remaining

term, −∇⊥
h w′ · (ūh + u′

h)z defining the vertical tilt (Montgomery et al. 2006). Majda
et al. (2008) study a variety of elementary exact solutions illustrating these competing
effects in the balanced model with specified heating from hot towers. There is direct
feedback and interactions with the large scale through the equation in (5.3) for the
mean moisture and temperature. The couple equations in (5.3) and (5.4) are what are
actually solved in all the numerics below.

The numerical method for solving (5.5), (5.6) consists of two fast spectral Poisson
solvers for (5.5) at each horizontal level of a regularly spaced vertical grid coupled
with standard horizontal pseudospectral methods for the horizontal advection in (5.6)
while the vertical advection and integration for (5.6) is done by utilizing a second-
order accurate upwind scheme on the vertical grid (Mohammadian & LeRoux 2008)
together with the boundary conditions w′|z = 0,H = 0 at the top and bottom of the
troposphere. Here the height of the troposphere, H , is given by 1.5, i.e. 15 km.
For numerical purposes, in standard fashion, horizontal hyperviscosity −µ4∇4ω′ is
added to the right-hand side of (5.6) with µ4 =D4(K

4
max	t)−1, 	t the time step and

K2
max =(π/	x)2 +(π/	y)2. Careful numerical experiments with the elementary plumes

yield the value D4 = 0.1, which ensures stability with minimal dissipation for the mesh
sizes used below. Time discretization is by a fourth-order Runge–Kutta method. The
cloud physics equations in (5.3) and (5.4) are solved by the same upwind scheme
utilized in § 4.

The simple multi-scale ordinary differential equations in (5.2) and (5.3) are solved
by a standard multi-time scale integrator since (5.2) occurs on the fast time scale while
(5.3) involves evolution on the long time scale (Grabowski 2004; Majda & Stechmann
2009; Xing et al. 2009). A few brief comments are made here. A coarse time step
for (5.3), 	T , is utilized with 	T = n	t with 	t the fine scale time step for (5.2)
and (5.4). For illustration, consider the horizontal momentum. The fluctuations ˜̄uh

are solved through (5.2) and updated each fine time step 	t while the coarse-grained
averages, Uh, in (5.3) are updated every coarse time step 	T through the empirical
time average of the turbulent flux divergence on the right-hand side of (5.3) over
the n-small-scale time steps. The representative value ε = 0.1 is utilized in the present
algorithm so that n= 10 and ūh is calculated at each small-scale time step by the
decomposition, ūh = Uh + ˜̄uh, from (2.9). The fourth-order Runge–Kutta method is
used for both coarse and fine scale time steps. This completes the numerical method.

5.2. Prototype simulations

Some simple prototype numerical simulations are shown in this subsection to briefly
illustrate features in the models. We choose the length and width of the periodic
domain as 12.8, i.e. 128 km, and the height of the troposphere as 1.5, i.e. 15 km. The
resolutions in the horizontal and vertical direction are 0.1 and 0.075, respectively, i.e.
1 km horizontal and 0.75 km vertical resolution. The large-scale time step 	T is set
as 0.1, and the small-scale time step 	t = ε	T is 0.01. The Coriolis effect coefficient
is given by the value at 25◦N, sin(25π/180). The numerical simulations are performed
for 400 units, i.e. 100 h. The initial conditions of the numerical test are given by

ω′
0 = 0, V0 = 0, ˜̄u0 = ˜̄v0 = 0, u′ = v′ = 0, (5.7)
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Figure 7. Contours and shading of small-scale vertical vorticity at time 400 for the test with
ω0 = 0, U0 = 0.25 − s0.25 cos(2πz/1.5) and saturation deficit δ = qvs0/32. Solid contour lines
represent positive values and dashed ones represents negative values. The results correspond
to the following levels: z =0.15 (a), z = 0.3 (b), z = 0.45 (c). The vorticity at the level 0.6 is

zero. (d ) Comparison of the initial (solid) and final (dashed) mean velocity
√

ū2 + v̄2. Note the
overlap of the initial and final velocity.

with the initial value U0 = 0.25 − 0.25 cos(2πz/1.5) and the moist background profile
with saturation deficit qvs0/32. From (5.6), the net circulation always vanishes over the
entire period box, so more subtle statistics are needed to see the buildup of low-level
cyclonic vorticity. We compute the skewness of vorticity for the whole ensemble of
data during the immediate past 48 time units. This skewness is defined by

γ =
µ3

σ 3
=

√
n

n∑
i=1

(ω′
i − ω′)3

(
n∑

i=1

(ω′
i − ω′)2

)3/2
, (5.8)

and n = 48 is utilized here; a positive skewness with an increasing amplitude reflects
preferred cyclonic activity.

A snapshot of the vorticity field in this numerical solution at time T = 400 is given
in figure 7 at the levels 0.15, 0.3 and 0.45 corresponding to 1.5, 3 and 4.5 km. The
vorticity is 0–4 significant figures above the level of 6 km since the hot towers with
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Figure 8. Skewness of small-scale vertical vorticity at different times for the test with ω0 = 0,
U0 = 0.25 − 0.25 cos(2πz/1.5) and saturation deficit δ = qvs0/32. The results correspond to the
following levels: z =0.15 (a), z = 0.3 (b), z = 0.45 (c). Note the cyclonic skewness at low levels.
(d ) Time history of vorticity maximum/minimum at z = 0.45.

this saturation deficit, δ = qvs0/32, rarely rise above this level as shown earlier in
figure 4. There is a clear buildup of more intense cyclonic vorticity as depicted in
figure 7. This is confirmed by the skewness plots in figure 8 which show a buildup
of significant positive skewness for most of the time interval. Figure 8(d ) shows the
intensifying vorticity extrema. Figure 7(d ) shows that the turbulent eddy momentum
flux divergences have a negligible effect on the mean momentum with similar results
(not shown) for the mean background moisture profile which is essentially unchanged.
We perform the same test with a different shear flow U0 = 0.25+0.25 sin(2πz/1.5) and
observe that the skewness is mostly negative or slightly positive for the 400 units of the
simulation time. Hence this rotating shear has created a favourable background for
cyclonic vorticity. This simulation is an example with features of the vertical hot tower
scenario of Montgomery et al. (2006). Other numerical simulations (Zhang & Bao
1996) and theory (Majda et al. 2008) support enhanced cyclonic vorticity generation
at low levels as we see here in the prototype simulation.
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6. Concluding discussions
Three simplified interacting moist multi-scale models for the hurricane embryo

have been developed in § 3 through systematic principles. These models isolate key
dynamical aspects of the hurricane embryo: the BMV model includes explicit effects
of rotation, nonlinear advection, upscale heating from moist convection and turbulent
momentum fluxes in a simple balanced model for mesoscale vortex intensification;
the microscale BHT model is a simplified balanced model for moist hot towers and
vortex dynamics in an interacting moist mesoscale environment; the MMW model
includes the impact of short time scale but spatial mesoscale fluctuations of moisture
and hydrostatically balanced gravity waves. The role of such simplified dynamical
models in understanding detailed moist hot tower dynamics has been illustrated in § 4
and § 5. A simplified cloud physics model for deep convection was introduced in § 4
and used to study moist axisymmetric plumes in an ambient background with varying
moisture. The simulations in § 5 illustrate the development of intense low-level cyclonic
fluctuations through moist BHTs with simplified cloud physics through multi-scale
balanced dynamics. Thus, the simplified models developed here capture several of the
features, in a qualitative fashion, observed in numerical simulations of comprehensive
models for the hurricane embryo (Hendricks et al. 2004; Montgomery et al. 2006).
Future research directions involve further development of the analytic properties of
the models with active moisture effects, and their potential use as diagnostic and
predictive models for key mechanisms for cyclogenesis in the hurricane embryo.
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grant DMS-0456713 and the Office of Naval Research grant N00014-05-1-0164. Y.X.
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